My youngest son, Barnacle Boy, swims like a fish. When he was small, he could stay under water just a second longer than I though he should be able to -- I'd be ready to reach under and haul him to the surface, and then up he would pop. I began to wonder if he had gills.
Nowadays I'm certain he has no gills, though he can still hold his breath for a long time. He's not quite completely adapted to an aquatic life, though. He suffers from water in the ears. And he hates to hear himself sloshing...
The standard remedy for water stuck in the ears is "SwimEar" - an ad for which reads in part:
"Once water enters this tube...surface tension will cause this water to adhere firmly to the walls of the canal, thereby blocking it. Why is this water so difficult to remove? This is due to surface tension effect as well as the fact that it is extremely difficult to break the vacuum that is created behind the trapped water in the ear canal."
Despite the popping sensation you can get when your ears finally clear from water, there is no vacuum behind the water (really, I'm certain). As the ad implies, the trouble is that water is clingy, and therefore has a high surface tension. The high surface tension is what impedes the flow of water out of the ear canal -- think of getting the water out of a thin straw. The ear canal is behaving like a capillary. Reduce the surface tension and the fluid will release.
SwimEar is just a solution of isopropyl alcohol with a dash of glycerin added for comfort. (Ethanol, or ethyl alcohol, is what we drink - but to a chemist, an alcohol is a molecule that has a "tail" of (mostly) carbons and hydrogens topped off by a hydroxyl group: OH. Ethanol is CH3CH2OH, isopropyl alcohol is (CH3)2CHOH.) The isopropyl alcohol lowers the surface tension of the water (so will a bit of soapy water for that matter).
- Home
- Angry by Choice
- Catalogue of Organisms
- Chinleana
- Doc Madhattan
- Games with Words
- Genomics, Medicine, and Pseudoscience
- History of Geology
- Moss Plants and More
- Pleiotropy
- Plektix
- RRResearch
- Skeptic Wonder
- The Culture of Chemistry
- The Curious Wavefunction
- The Phytophactor
- The View from a Microbiologist
- Variety of Life
Field of Science
-
-
RFK Jr. is not a serious person. Don't take him seriously.1 month ago in Genomics, Medicine, and Pseudoscience
-
-
-
The Site is Dead, Long Live the Site2 years ago in Catalogue of Organisms
-
The Site is Dead, Long Live the Site2 years ago in Variety of Life
-
-
What I read 20194 years ago in Angry by Choice
-
-
-
Histological Evidence of Trauma in Dicynodont Tusks6 years ago in Chinleana
-
Posted: July 21, 2018 at 03:03PM6 years ago in Field Notes
-
Why doesn't all the GTA get taken up?6 years ago in RRResearch
-
-
Harnessing innate immunity to cure HIV8 years ago in Rule of 6ix
-
-
-
-
-
-
post doc job opportunity on ribosome biochemistry!9 years ago in Protein Evolution and Other Musings
-
Blogging Microbes- Communicating Microbiology to Netizens10 years ago in Memoirs of a Defective Brain
-
Re-Blog: June Was 6th Warmest Globally10 years ago in The View from a Microbiologist
-
-
-
The Lure of the Obscure? Guest Post by Frank Stahl12 years ago in Sex, Genes & Evolution
-
-
Lab Rat Moving House13 years ago in Life of a Lab Rat
-
Goodbye FoS, thanks for all the laughs13 years ago in Disease Prone
-
-
Slideshow of NASA's Stardust-NExT Mission Comet Tempel 1 Flyby13 years ago in The Large Picture Blog
-
in The Biology Files
The Who, What, When, Where and Why of Chemistry
Chemistry is not a world unto itself. It is woven firmly into the fabric of the rest of the world, and various fields, from literature to archeology, thread their way through the chemist's text.
Sweet leads
Horror of horrors - the Romans used lead to sweeten their fruit. No wonder Rome fell! Except that I was willing to read a 1883 paper (in German with healthy helpings of Greek and Latin) to discover that it may be lead and it may be sweet, but the lead doesn't lead it to be sweet.
In a time when mercury was regularly used as a remedy for maladies as serious as syphilis and as commonplaces as constipation, it doesn’t surprise me that lead compounds were in the pharmacopeia. (In all fairness, some modern antibiotics and most chemotherapy agents are at least as toxic as these less old remedies; they just have a better risk-benefit ratio.) Sugar of lead, or as it’s called in the 19th century medical literature, saccharum saturni, is lead acetate: Pb(CH3COOH)2. It was once prescribed for intestinal troubles, an odd choice, since one symptom of acute lead poisoning is an upset stomach. Lead poisoning is also known as painter's colic.
Sugar of lead really is sweet, roughly as sweet per spoonful as sugar. In the 18th and 19th century, lead shot was often dropped into bottles of port, purportedly to make it sweeter - though the more likely effect is anti-bacterial. Why? Lead does dissolve well in alcohol and juices (crystal decanters to store your port are a bad idea) - but I can't find anything that suggests solutions of lead ions are sweet.
The Romans were reputed to use lead acetate as a sweetener. They produced a syrup called sapa by boiling down mildly fermented grape juice in kettles made from lead alloys. (The hydrates of lead acetate are far less soluble in alcohol solutions - you are more likely to get a suspension of crystals in the syrup.) I am suggesting that it’s unlikely that the syrup was sweet because of the lead acetate it certainly contained. An 1883 analysis of sapa produced according to recipes dating from the classical Roman period, in kettles of similar metallic content to those found at Pompeii and other sites, suggested that the lead content of sapa was roughly 850 mg per liter. The equivalent amount of table sugar would be roughly a teaspoon - hardly enough to taste sweet in a liter of liquid. On the other hand, the sugars (glucose and fructose) in the concentrated grape must are the equivalent of 1 cup of table sugar per liter and would certainly swamp any sweetness coming from the lead acetate. It's still not all that sweet. To get a sense of how sweet this is, simple syrup, which has similar culinary uses to sapa, has about 4 cups of sugar in a liter.
I still wouldn't use sapa to poach my pears, but I think it unlikely that the sweet taste of sapa has much to do with lead.
Photo is c. 2009 John4kc. Used with permission.
Sweet Stones
I was wandering the Cape Anne historical museum this winter and noticed in a 19th century ship's medical kit a vial labeled "sugar of lead." This is lead acetate, which tastes sweet -- and is reputed to have been used as a sweetener is days past. Other metal salts are sweet as well - yttrium salts and beryllium salts can both taste sweet.
Beryllium was first identified in 1798 by chemist Louis Vauquelin as an oxide in beryl and emeralds (emeralds are beryls with a bit of chromium added!). Since the chloride salt of the new element tasted sweet, the editors of the journal which published Vauquelin's findings suggested he call the oxide (or earth) glucina from the Greek, glyks (γλυκυς) for sweet. The elemental symbol used was Gl.
Beryllium was suggested as alternative once other sweet metal salts were found, for the gemstones in which the element was first identified. It took until 1949 for this to become the official IUPAC name of the element with four protons.
Beryls were used to make "reading stones," magnifying glasses, then eventually ground into lenses for eyeglasses.
Beryllium was first identified in 1798 by chemist Louis Vauquelin as an oxide in beryl and emeralds (emeralds are beryls with a bit of chromium added!). Since the chloride salt of the new element tasted sweet, the editors of the journal which published Vauquelin's findings suggested he call the oxide (or earth) glucina from the Greek, glyks (γλυκυς) for sweet. The elemental symbol used was Gl.
Beryllium was suggested as alternative once other sweet metal salts were found, for the gemstones in which the element was first identified. It took until 1949 for this to become the official IUPAC name of the element with four protons.
Beryls were used to make "reading stones," magnifying glasses, then eventually ground into lenses for eyeglasses.
Anti-Archimedes
The recipe for pulled pork called for 1/2 cup of brown sugar to be dissolved into 1 1/2 cups of apple cider vinegar. What I had in the cabinet was solid as a rock - there was no way I was packing this into a measuring cup. (Yes, I know I could have done this in the microwave...) My scale came to the rescue. I hacked off chunks until I had the correct mass of brown sugar (110 grams more or less). I dumped the three large hunks into the vinegar in a 2 cup glass measure, and noted that the total volume was just about 2 cups. Nice job.
Then I stirred it to dissolve the sugar. And watched the volume decrease to just over 1 1/2 cups of solution! Have I just proved Archimedes wrong? The volume of sugar at first seemed to have displaced the equivalent volume of liquid, but then seemed to vanish...well not exactly into thin air, but vanish nonetheless. As my 15-year old might say, "What's up with that?"
Yes, Archimedes was correct, but his theory did not address substances that dissolve in the liquid. This is a good demonstration of how much "empty "space is in a liquid. The sugar molecules (and other things in brown sugar, which is not terribly pure as chemicals go) insert themselves between water molecules, without needing to push the water molecules further apart. To a good first approximation the volume of a solution made from a solvent and soluble solid is the volume of the solvent used, not the sum of the two volumes.
Try it...it's fun to watch, and it still intrigues me to think about the amount of unused space there is in a liquid that seems so substantial at the macroscopic level!
The pulled pork was a keeper...though the kids found the BBQ sauce too spicy for their taste. Try it on challah rolls!
Then I stirred it to dissolve the sugar. And watched the volume decrease to just over 1 1/2 cups of solution! Have I just proved Archimedes wrong? The volume of sugar at first seemed to have displaced the equivalent volume of liquid, but then seemed to vanish...well not exactly into thin air, but vanish nonetheless. As my 15-year old might say, "What's up with that?"
Yes, Archimedes was correct, but his theory did not address substances that dissolve in the liquid. This is a good demonstration of how much "empty "space is in a liquid. The sugar molecules (and other things in brown sugar, which is not terribly pure as chemicals go) insert themselves between water molecules, without needing to push the water molecules further apart. To a good first approximation the volume of a solution made from a solvent and soluble solid is the volume of the solvent used, not the sum of the two volumes.
Try it...it's fun to watch, and it still intrigues me to think about the amount of unused space there is in a liquid that seems so substantial at the macroscopic level!
The pulled pork was a keeper...though the kids found the BBQ sauce too spicy for their taste. Try it on challah rolls!
Subscribe to:
Posts (Atom)