We are expecting another round of wintry weather tomorrow, and an article in the local paper noted that the snow and bitingly cold weather we have had recently are good for farmers. The cold reduces the population of some pests, particularly the species making their way north. The article also noted that snow contains nitrogen from the atmosphere, providing a little extra boost for lawns come spring.
The atmosphere is roughly 80% nitrogen, in the form of N2. The form matters. Nitrogen gas is very unreactive, so much so that it many "air sensitive" materials are packed under pure nitrogen. (The part of the air that is reactive is molecular oxygen, O2.) Snow certainly contains dissolved nitrogen gas. Henry's law predicts the solubility of a gas in a solvent, water in this case, as a function of temperature. It might seem at first glance counter intuitive, but gases are more soluble in cold solvents than in warm (the opposite is true of most solids, as anyone who has tried to dissolve sugar in cold ice tea knows). An inch of snow contains about 7 milligrams of nitrogen gas per square foot, or about 1/3 of a kilogram in an acre of snow. Given that fertilizers are spread onto fields at a field of roughly 300 kilograms per acre, it's not much.
The trouble is actually that this nitrogen isn't in a form that easily accessible to plants. Nitrogen in the atmosphere must first be "fixed" or changed into a more reactive form, typically tetravalent nitrogen (ammonium) which is then converted to the nitrate ions that plants can use. So where does the useful sort of nitrogen come from?
Industrially, nitrogen is fixed in the Haber process. Since nitrogen is so unreactive, this requires pressures hundreds of times those of earth's atmosphere and temperatures more likely to be found on the surface of Venus (over 700oF). Nitrogen is fixed in the biosphere by microbes, which undertake an elaborate enzymatic dance to do this at low temperatures and pressures (and yes, scientists are on the job of trying to figure out how to get the enzymatic processes to work at industrial scales.)
Lightening strikes also convert minuscule amounts of N2 in the atmosphere to nitrogen oxides, and industrial pollution has also injected nitrogen oxides into the atmosphere. Industrial pollutants are by far the biggest contributors. The nitrogen oxides become nitrate ions. These are the nitrogen sources that turn a blanket of snow into a gentle fertilizer.
To put it into perspective, snow and rain probably deposit about 5 kilograms total per acre over a year. It's not much, it's not quite all natural (the rates were much lower in pre-industrial days), but it's something.
- Home
- Angry by Choice
- Catalogue of Organisms
- Chinleana
- Doc Madhattan
- Games with Words
- Genomics, Medicine, and Pseudoscience
- History of Geology
- Moss Plants and More
- Pleiotropy
- Plektix
- RRResearch
- Skeptic Wonder
- The Culture of Chemistry
- The Curious Wavefunction
- The Phytophactor
- The View from a Microbiologist
- Variety of Life
Field of Science
-
-
-
The Hayflick Limit: why humans can't live forever1 month ago in Genomics, Medicine, and Pseudoscience
-
-
Course Corrections4 months ago in Angry by Choice
-
-
The Site is Dead, Long Live the Site2 years ago in Catalogue of Organisms
-
The Site is Dead, Long Live the Site2 years ago in Variety of Life
-
Does mathematics carry human biases?3 years ago in PLEKTIX
-
-
-
-
A New Placodont from the Late Triassic of China5 years ago in Chinleana
-
Posted: July 22, 2018 at 03:03PM6 years ago in Field Notes
-
Bryophyte Herbarium Survey6 years ago in Moss Plants and More
-
Harnessing innate immunity to cure HIV8 years ago in Rule of 6ix
-
WE MOVED!8 years ago in Games with Words
-
-
-
-
post doc job opportunity on ribosome biochemistry!9 years ago in Protein Evolution and Other Musings
-
Growing the kidney: re-blogged from Science Bitez9 years ago in The View from a Microbiologist
-
Blogging Microbes- Communicating Microbiology to Netizens10 years ago in Memoirs of a Defective Brain
-
-
-
The Lure of the Obscure? Guest Post by Frank Stahl12 years ago in Sex, Genes & Evolution
-
-
Lab Rat Moving House13 years ago in Life of a Lab Rat
-
Goodbye FoS, thanks for all the laughs13 years ago in Disease Prone
-
-
Slideshow of NASA's Stardust-NExT Mission Comet Tempel 1 Flyby13 years ago in The Large Picture Blog
-
in The Biology Files
The Who, What, When, Where and Why of Chemistry
Chemistry is not a world unto itself. It is woven firmly into the fabric of the rest of the world, and various fields, from literature to archeology, thread their way through the chemist's text.
5 comments:
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS
Subscribe to:
Post Comments (Atom)
very intruiging.... great post :D
ReplyDeleteI enjoyed this article, the author has a great sense of her chemistry and does a great explanation of the science and how it is applied. Michelle convince me to starting thinking of the world in a more chemically processed world.
ReplyDeleteExciting. I just know that snow also contains nitrogen.
ReplyDeleteThank you.
Regards,
Ilmu Kimia
I just know that snow also contains nitrogen. this is great. nice article
ReplyDeleteRegard,
Ilmu Bahasa
Nitrogen just around us! Wonderfully post by you.. Thanks
ReplyDelete