Field of Science

A day in pchem lecture: NMR, lululemon yoga pants and tattoos

By lululemon athletica
(Flickr: Yoga Journal Conference)
 [CC BY 2.0], via Wikimedia Commons
It's the end of term, two more 90 minute lectures left in my introductory quantum chemistry and spectroscopy course.  We've done the basics of wave functions and expectation values, we've looked at linear variation theory and written code to do Hückel MO calculations, we've covered rotational and vibrational and rotational-vibrational spectroscopy.  So what to do with these last few days?  The quantum mechanics of NMR.

I kicked off today's lecture by looking at magnetic field strengths, what's the earth's magnetic field (5 μT) or of a refrigerator magnet (5 mT), compared to the superconducting magnets used in NMR, which are on the order of 10T. (1T is one tesla.)  This led to a quick review of the risks in MRI, which aren't about the energy of the radiation used (which is billions of times lower than X-rays), but more about the interactions of the high magnetic fields, the radiofrequencies and metals.

A hand shot up and student who is an EMT describes a patient whose tattoo started burning during an MRI.  I pointed out this is a known phenomenon, and while most inks don't pose an issue, it should discourage you from DIY tattooing.  Then a student asked, "Is it true you can't wear lululemon pants when you have an MRI?"

I admitted this was out of my zone, but promised to follow up.

I can now report that yes, wearing lululemon pants — or any clothing with metallic microfibers, such as those great antimicrobial t-shirts — in an MRI can lead to serious burns, particularly in patients that have been sedated or are otherwise unconscious and unable to signal their discomfort.  Even non-ferromagnetic materials presents problems in the MRI as eddy currents can develop around them, creating little induction heaters.  Loops of all sorts, even skin to skin contact between a patient's own body parts can lead to heating and subsequent burns.  And tattoos with large loops in them?  They can heat as well.


Other things I learned this afternoon.  You can levitate a frog with a 16T field (thank you Wikipedia), and neutron stars have magnetic fields on the megaTesla scale.