Before chemists became adept at synthesizing and purifying single molecules, materia medica relied heavily on plant based materials. The chemicals in plants are not uniformly innocuous, or safe at any dose, a point I tried to make in this article at Slate a couple of weeks ago. A case in point: St. Ignatius' beans.
Last fall, I was digging through a 1903 organic chemistry text (looking for examples of eponyms for this article), when a familiar name caught my eye. What was St. Ignatius doing in a chemistry textbook, an organic one at that? Jesuits, I could understand (quinine is extracted from cinchona, also called Jesuits' bark), but Ignatius (the founder of the Jesuits) himself?
"Strychnine, C21H22O2N2, is found in St. Ignatius' bean..." What is a violent poison doing in a bean named for Ignatius? Despite the fact that I was up against an impending writing deadline and had a couple of dozen exams to grade, I had to know.
Faba Sancti Ignatii were first described by an Austrian Jesuit living in the Philippines in the 17th century, George Kamel, S.J. (his description was published in the Philosophical Transactions in 1699 - and yes, I looked up the Latin version). Later authors speculated the plant was named for Ignatius because of its many medicinal virtues (which they do not list). At the turn of the last century strychnine was part of the US Pharmacopoeia, prescribed as a stimulant — it was implicated in a early Olympic doping scandal — and for gastric upset; in the Phillipines it was often (more sensibly) the bean was worn on a string around the neck for protection against various diseases. These days it forms the basis for a homeopathic nostrum prescribed for grief and melancholia, particularly when associated with an abundance of tears.
A version of this post appeared at Quantum Theology.
The Who, What, When, Where and Why of Chemistry
Chemistry is not a world unto itself. It is woven firmly into the fabric of the rest of the world, and various fields, from literature to archeology, thread their way through the chemist's text.
Pages
▼
Chemophobia: The Boy with a Thorn in His Joints
I'm at ScienceOnline2013 where Carmen Drahl and Dr. Rubidium just finished running a terrific session on chemophobia: how can we bridge the gap between "better living through chemistry" and ads for "chemical-free sleep aids." The thrust of the session was not how to convince people chemistry and chemicals are good, but more about how to inject nuance into the public conversation. Chemicals have risks and benefits — and of course, are unavoidable. But we current view chemical as synonymous with toxic, hazardous, unnatural or just plain bad.
What are the roots of this cultural shift? Can understanding these help scientists and writers communicate more clearly and in the end help people not only understand what is in their "stuff" — chemicals, it's all chemicals — but give them tools to work with and make decisions about the materials that make up the world — chemicals. As @docfreeride (ethicist Janet Stemmwedel) noted at another session yesterday, we can agree on facts, and still make different decisions based on them.
Today's New York Times has a perfect example of the various ways chemophobia presents in the Magazine: The Boy with a Thorn in His Joints. The piece chronicles Susannah Meadow's search for an effective treatment for her son's rheumatoid arthritis. She agonizes about the decision to give him methotrexate (which in high doses is used in anticancer treatment) and turns to alternative treatments, in particular four-marvels powder. There are intense arguments with the pediatricians and with her husband over the issue. I was struck by two things in this piece. First, the language Meadows uses to limn the controversy, and second her ignorance, not so much of the chemistry that is in your face (methotrexate), but of the ways in which chemistry is couched in alternative cultural schemes(four-marvels powder).
It makes me wonder how chemophobia is linked to the language we use to talk about it. It can be nearly impossible for an non-chemist to figure out what methotrexate is (beyond "a chemical"). The very name sounds harsh. Four-marvels powder is easy to parse: a powder with four effects. Its name rings with hope.
I also wonder if we worry more about stuff we are familiar with, we've heard more talk on the street about their risks. So we obsess about vaccines, because we hear and read about the side-effects of vaccines, but how many people know anyone who has died of measles? (One of my sister's friends died of measles when I was a child, before there was a vaccine.) So we get in the Times' piece "I was desperate to find a way...without the drugs." pushed up against "[My husband] has always been more comfortable with pharmaceuticals, more trusting in general."
Of course, four-marvel powder is a pharmaceutical, it's just from a different pharmacopoeia — the traditional Chinese — than the one Meadows or her husband is familiar with. Meadows can read the package insert with information on the side-effects of methotrexate, she may be unaware of the routine advice given in Chinese medicine programs (and yes, there are formal academic programs in Chinese medicine, e.g. at Nanyang Technical University) about four-marvels powder (it should never be given to pregnant women, for example, which might make you hesitate before giving it long term to infants or young children).
The session at SciOnline2013 brainstormed about effective ways to help people develop a better sense of nuance around what is a chemical and what are the risks of this particular chemical? What strategies do you think would be most effective?
What are the roots of this cultural shift? Can understanding these help scientists and writers communicate more clearly and in the end help people not only understand what is in their "stuff" — chemicals, it's all chemicals — but give them tools to work with and make decisions about the materials that make up the world — chemicals. As @docfreeride (ethicist Janet Stemmwedel) noted at another session yesterday, we can agree on facts, and still make different decisions based on them.
Today's New York Times has a perfect example of the various ways chemophobia presents in the Magazine: The Boy with a Thorn in His Joints. The piece chronicles Susannah Meadow's search for an effective treatment for her son's rheumatoid arthritis. She agonizes about the decision to give him methotrexate (which in high doses is used in anticancer treatment) and turns to alternative treatments, in particular four-marvels powder. There are intense arguments with the pediatricians and with her husband over the issue. I was struck by two things in this piece. First, the language Meadows uses to limn the controversy, and second her ignorance, not so much of the chemistry that is in your face (methotrexate), but of the ways in which chemistry is couched in alternative cultural schemes(four-marvels powder).
It makes me wonder how chemophobia is linked to the language we use to talk about it. It can be nearly impossible for an non-chemist to figure out what methotrexate is (beyond "a chemical"). The very name sounds harsh. Four-marvels powder is easy to parse: a powder with four effects. Its name rings with hope.
I also wonder if we worry more about stuff we are familiar with, we've heard more talk on the street about their risks. So we obsess about vaccines, because we hear and read about the side-effects of vaccines, but how many people know anyone who has died of measles? (One of my sister's friends died of measles when I was a child, before there was a vaccine.) So we get in the Times' piece "I was desperate to find a way...without the drugs." pushed up against "[My husband] has always been more comfortable with pharmaceuticals, more trusting in general."
Of course, four-marvel powder is a pharmaceutical, it's just from a different pharmacopoeia — the traditional Chinese — than the one Meadows or her husband is familiar with. Meadows can read the package insert with information on the side-effects of methotrexate, she may be unaware of the routine advice given in Chinese medicine programs (and yes, there are formal academic programs in Chinese medicine, e.g. at Nanyang Technical University) about four-marvels powder (it should never be given to pregnant women, for example, which might make you hesitate before giving it long term to infants or young children).
The session at SciOnline2013 brainstormed about effective ways to help people develop a better sense of nuance around what is a chemical and what are the risks of this particular chemical? What strategies do you think would be most effective?