In 1865 John Maisch published a short paper "On the Active Principle of Rhus Toxicodendron". For the unsensitized, rhus toxicodendron is the botanical name for poison ivy. Maisch isolated a fraction he considered to be the "active principle" responsible for the misery that is poison ivy and dubbed it toxicodendric acid. Are you itchy yet? (I am and Maisch surely was, he and various visitors to his lab suffered with outbreaks of poison ivy.)
By 1897 Franz Pfaff of Harvard had weighed in. Toxicodendric acid extracted from poison ivy turned out to be acetic acid - yes, vinegar, by another name, CH3COOH. He showed the itch was in the oil.
The Who, What, When, Where and Why of Chemistry
Chemistry is not a world unto itself. It is woven firmly into the fabric of the rest of the world, and various fields, from literature to archeology, thread their way through the chemist's text.
Pages
▼
It's Just a Phase
Allotropes are all the rage? Or at least sending Conan O'Brien over a very funny edge! The bit was inspired by this article in the NY Times science section. I'm not nearly this riveting when I lecture about allotropes, I've got to admit.
O'Brien gets the chemistry nearly right. My only quibble would be that he calls the different forms (the diagrams are the real thing, by the way) different phases, which they aren't really. They are technically allotropes, different structural forms within the same phase or state of matter. The quintessential example is the allotropes of solid carbon, graphite and diamond and a few others. All that said, when you draw a phase diagram for an element, you show the allotropes on it, and many chemists would characterize the change from one allotrope to another as a phase change.
Oxygen has some fascinating solid allotropes, including one that is a blue solid at room temperature!